Nowhere continuous function

In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If f is a function from real numbers to real numbers, then f(x) is nowhere continuous if for each point x there is an ε > 0 such that for each δ > 0 we can find a point y such that |x − y| < δ and |f(x) − f(y)| ≥ ε. Therefore, no matter how close we get to any fixed point, there are even closer points at which the function takes not-nearby values.

More general definitions of this kind of function can be obtained, by replacing the absolute value by the distance function in a metric space, or by using the definition of continuity in a topological space.

One example of such a function is the indicator function of the rational numbers, also known as the Dirichlet function, named after German mathematician Peter Gustav Lejeune Dirichlet.[1] This function is written IQ and has domain and codomain both equal to the real numbers. IQ(x) equals 1 if x is a rational number and 0 if x is not rational. If we look at this function in the vicinity of some number y, there are two cases:

In plainer terms, between any two irrationals, there is a rational, and vice versa.

The Dirichlet function can be constructed as the double pointwise limit of a sequence of continuous functions, as follows:

f(x)=\lim_{k\to\infty}\left(\lim_{j\to\infty}\left(\cos(k!\pi x)^{2j}\right)\right)

for integer j and k.

This shows that the Dirichlet function is a Baire class 2 function. It cannot be a Baire class 1 function because a Baire class 1 function can only be discontinuous on a meagre set.[2]

In general, if E is any subset of a topological space X such that both E and the complement of E are dense in X, then the real-valued function which takes the value 1 on E and 0 on the complement of E will be nowhere continuous. Functions of this type were originally investigated by Dirichlet.

See also

References

  1. ^ Dirichlet, J.P.G. Lejeune (1829) "Sur la convergence des séries trigonométriques qui servent à répresenter une fonction arbitraire entre des limites donées" [On the convergence of trigonometric series which serve to represent an arbitrary function between given limits], Journal für reine und angewandte Mathematik [Journal for pure and applied mathematics (also known as Crelle's Journal)], vol. 4, pages 157 - 169.
  2. ^ Dunham, William (2005). The Calculus Gallery. Princeton University Press. pp. 197. ISBN 0-691-09565-5. 

External links